Hello guest: Log in or Register Sales & Support Tel: +44 (0)23 8076 9893 Contact us

Mode field diameter, MFD

Mode-field diameter (MFD) is important because, as a measure of the size of the optical field itself, it enables you to design launch-optics to match the mode of the source to that of the fiber and so maximize launching-efficiency. MFD is determined by the numerical aperture (NA) and cut-off wavelength of the fiber and is related to the diameter of the fiber core.  In general, MFD is greater than the physical diameter of the fiber core - which means that some optical power is always guided by the fiber cladding.

MFD is typically defined as the radial position where intensity falls to e-2 of the peak intensity. MFD for any step-index fiber may be estimated from NA and cut-off information to calculate the V-value, which is directly related to the MFD by the following approximation:

The MFD is typically larger than the core diameter, though of course varies with the interplay of parameters that affect V-value. In telecoms fiber operated above cut-off, the core diameter might be around 9 µm, and the MFD is around 10.4 µm. With very high NA fiber, up around 0.2 or 0.3, the core diameter is just a few microns while MFD might be around 5 µm. The ratio of MFD to core diameter is largely driven by how close to cut-off the fiber is operated, and at any given wavelength the fraction of mode field in the cladding will be independent of the NA, though the actual values of MFD and core diameter are very sensitive to cut-off and operating wavelength.

From these equations, you can see that MFD increases as cut-off wavelength increases (as does core-size).  Also, for a fixed cut-off, the further above cut-off you transmit the larger the MFD becomes - that is the more power is transmitted in the cladding.  For more information on MFD, please ask for a copy of our ‘Mode Field Diameter’ technical note.

Be aware that this approximation is most valid for estimating MFD in germanosilicate core singlemode and HiBi fibers. For rare-earth doped fibers it can be useful to estimate mode field to evaluate overlap with the core and model amplifier or laser performance.

Register
Login

To access more information please register

Here at Fibercore we take your privacy seriously and will only use your personal information to administer your account and to provide the products and services you have requested from us. We will never sell personal data to 3rd parties. Click here for full details of our Privacy Policy.






  • I would like to subscribe to the Fibercore eNewsletter

    Fibercore will from time-to-time send you product and company news. You may unsubscribe at any point

    Register

How can we help you?

Here at Fibercore we take your privacy seriously and will only use your personal information to administer your account and to provide the products and services you have requested from us. We will never sell personal data to 3rd parties. Click here for full details of our Privacy Policy.
  • required fields* Submit